Comparing approximate and probabilistic differential privacy parameters

This paper compares two notions of differential privacy: approximate differential privacy (ADP) and probabilistic differential privacy (PrDP). It is well-known that the PrDP implies the ADP; and it was established in [7] that the ADP implies the PrDP, after a penalty on the parameters ε and δ that a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 2023-08, Vol.182, p.106380, Article 106380
Hauptverfasser: Guingona, Vincent, Kolesnikov, Alexei, Nierwinski, Julianne, Schweitzer, Avery
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper compares two notions of differential privacy: approximate differential privacy (ADP) and probabilistic differential privacy (PrDP). It is well-known that the PrDP implies the ADP; and it was established in [7] that the ADP implies the PrDP, after a penalty on the parameters ε and δ that are used in the definitions of both properties. We show that the condition found in [7] is tight: if it fails, we construct a randomized algorithm that has ADP but not PrDP. •Comparison of approximate and probabilistic differential privacy.•Analysis of how penalties on privacy parameters effect comparison.•Fixing either parameter gives a failure of one implication.•With sufficient penalties on both parameters, implication holds.
ISSN:0020-0190
1872-6119
DOI:10.1016/j.ipl.2023.106380