On the parameterized complexity of the Maximum Exposure Problem
We investigate the parameterized complexity of the Maximum Exposure Problem (MEP). Given a range space (R,P) where R is the set of ranges containing a set P of points and an integer k, MEP asks for k ranges, which on removal results in the maximum number of exposed points. A point p is said to be ex...
Gespeichert in:
Veröffentlicht in: | Information processing letters 2023-02, Vol.180, p.106338, Article 106338 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the parameterized complexity of the Maximum Exposure Problem (MEP). Given a range space (R,P) where R is the set of ranges containing a set P of points and an integer k, MEP asks for k ranges, which on removal results in the maximum number of exposed points. A point p is said to be exposed when p is not contained in any of the ranges in R. The problem is known to be NP-hard. In this paper, we give fixed-parameter tractable results of MEP with respect to different parameterizations.
•Maximum Exposure Problem (MEP) is not studied till date in the realm of parameterized complexity.•MEP is proved to be W[1]-hard with respect to the solution size, using parameterized reductions.•MEP is proved to be Fixed Parameter Tractable (FPT) for a multiparameterization.•MEP is proved to be Fixed Parameter Tractable (FPT) with respect to the number of cells that contain points. |
---|---|
ISSN: | 0020-0190 1872-6119 |
DOI: | 10.1016/j.ipl.2022.106338 |