Statistical EL is ExpTime-complete

We show that the consistency problem for Statistical EL ontologies, defined by Peñaloza and Potyka, is ▪-hard. Together with existing ▪ upper bounds, we conclude ▪-completeness of the logic. Our proof goes via a reduction from the consistency problem for EL extended with negation of atomic concepts....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 2021-08, Vol.169, p.106113, Article 106113
1. Verfasser: Bednarczyk, Bartosz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the consistency problem for Statistical EL ontologies, defined by Peñaloza and Potyka, is ▪-hard. Together with existing ▪ upper bounds, we conclude ▪-completeness of the logic. Our proof goes via a reduction from the consistency problem for EL extended with negation of atomic concepts. •We proved that the consistency problem for Statistical EL ontologies is ExpTime-complete.•Our proof went via a reduction from the consistency problem for EL extended with negation of atomic concepts.•Probabilistic conditionals can express that exactly half of the domain elements belong to a certain concept.
ISSN:0020-0190
1872-6119
DOI:10.1016/j.ipl.2021.106113