Statistical EL is ExpTime-complete
We show that the consistency problem for Statistical EL ontologies, defined by Peñaloza and Potyka, is ▪-hard. Together with existing ▪ upper bounds, we conclude ▪-completeness of the logic. Our proof goes via a reduction from the consistency problem for EL extended with negation of atomic concepts....
Gespeichert in:
Veröffentlicht in: | Information processing letters 2021-08, Vol.169, p.106113, Article 106113 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the consistency problem for Statistical EL ontologies, defined by Peñaloza and Potyka, is ▪-hard. Together with existing ▪ upper bounds, we conclude ▪-completeness of the logic. Our proof goes via a reduction from the consistency problem for EL extended with negation of atomic concepts.
•We proved that the consistency problem for Statistical EL ontologies is ExpTime-complete.•Our proof went via a reduction from the consistency problem for EL extended with negation of atomic concepts.•Probabilistic conditionals can express that exactly half of the domain elements belong to a certain concept. |
---|---|
ISSN: | 0020-0190 1872-6119 |
DOI: | 10.1016/j.ipl.2021.106113 |