Dynamic planar range skyline queries in log logarithmic expected time

•We study the problem of dynamic planar 3-sided skyline queries.•We assume that the point coordinates are drawn from a class of distributions.•We achieve O(log2⁡Nlog⁡log⁡N) expected update time.•And O(tlog⁡log⁡N) expected query time w.h.p. using linear space. The skyline of a set P of points consist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 2020-10, Vol.162, p.105990, Article 105990
Hauptverfasser: Doka, K., Kosmatopoulos, A., Papadopoulos, A., Sioutas, S., Tsichlas, K., Tsoumakos, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•We study the problem of dynamic planar 3-sided skyline queries.•We assume that the point coordinates are drawn from a class of distributions.•We achieve O(log2⁡Nlog⁡log⁡N) expected update time.•And O(tlog⁡log⁡N) expected query time w.h.p. using linear space. The skyline of a set P of points consists of the “best” points with respect to minimization or maximization of the attribute values. A point p dominates another point q if p is as good as q in all dimensions and it is strictly better than q in at least one dimension. In this work, we focus on the 2-d space and provide expected performance guarantees for dynamic (insertions and deletions) 3-sided range skyline queries. We assume that the x and y coordinates of the points are drawn from a class of distributions and present the ML-tree (Modified Layered Range-tree), which attains O(log2⁡Nlog⁡log⁡N) expected update time and O(tlog⁡log⁡N) time with high probability for finding planar skyline points in a 3-sided query rectangle q=[a,b]×[d,+∞) in the RAM model, where N is the cardinality of P and t is the answer size.
ISSN:0020-0190
1872-6119
DOI:10.1016/j.ipl.2020.105990