Three-way classification for sequences of observations

This article introduces the novel technique to reduce the computation time for classifying a sequence of observations (frames), such as a video stream, where each observation is described by high-dimensional embeddings extracted by a deep neural network. By using the methodology of granular computin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2023-11, Vol.648, p.119540, Article 119540
Hauptverfasser: Savchenko, A.V., Savchenko, L.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article introduces the novel technique to reduce the computation time for classifying a sequence of observations (frames), such as a video stream, where each observation is described by high-dimensional embeddings extracted by a deep neural network. By using the methodology of granular computing, an observed sequence is represented at various scales using different frame rates. The coarse-grained granule is described as an aggregation (mean pooling) of deep embeddings of an object from a few frames extracted with a low frame rate. A descriptor for a fine-grained granule is computed using the embeddings of most frames. The classifiers are learned for every granularity level. At the classification phase, the coarse-grained descriptor of the input sequence is fed into the first classifier, and the classes with high confidence scores fill a positive set from three-way decisions. The decision-making procedure is terminated at a granularity level for which the only one category is included in its positive set or the last fine-grained granule is reached. It is experimentally shown for the video-based facial expression recognition problem that our technique is up to 30 times faster than traditional processing of all frames without significant accuracy degradation.
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2023.119540