Fair oversampling technique using heterogeneous clusters

Class imbalance and group (e.g., race, gender, and age) imbalance are acknowledged as two reasons in data that hinder the trade-off between fairness and utility of machine learning classifiers. Existing techniques have jointly addressed issues regarding class imbalance and group imbalance by proposi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2023-09, Vol.640, p.119059, Article 119059
1. Verfasser: Sonoda, Ryosuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Class imbalance and group (e.g., race, gender, and age) imbalance are acknowledged as two reasons in data that hinder the trade-off between fairness and utility of machine learning classifiers. Existing techniques have jointly addressed issues regarding class imbalance and group imbalance by proposing fair oversampling techniques. Unlike the common oversampling techniques, which only address class imbalance, fair oversampling techniques significantly improve the abovementioned trade-off, as they can also address group imbalance. However, if the size of the original clusters is too small, these techniques may cause classifier overfitting. To address this problem, we herein develop a fair oversampling technique using data from heterogeneous clusters. The proposed technique generates synthetic data that have class-mix features or group-mix features to make classifiers robust to overfitting. Moreover, we develop an interpolation method that can enhance the validity of generated synthetic data by considering the original cluster distribution and data noise. Finally, we conduct experiments on five realistic datasets and three classifiers, and the experimental results demonstrate the effectiveness of the proposed technique in terms of fairness and utility.
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2023.119059