Long-lasting Bacillus safensis CG1 and Bacillus cereus DKBovi-5 based coconut shell biochar spore composites as self-healing additives for bio-mortar production

The major challenge in the production of bio-mortar lies in the effective storage of immobilised bacterial carriers. This study explores the effective storage and use of coconut shell biochar as a carrier for bacterial spores. Bacillus safensis CG1 and Bacillus cereus DKBovi-5 were immobilised in bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial crops and products 2024-12, Vol.222, p.120074, Article 120074
Hauptverfasser: Anoop, P.P., Palanisamy, T., Gupta, Alka, Gopal, Murali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The major challenge in the production of bio-mortar lies in the effective storage of immobilised bacterial carriers. This study explores the effective storage and use of coconut shell biochar as a carrier for bacterial spores. Bacillus safensis CG1 and Bacillus cereus DKBovi-5 were immobilised in biochar and stored at 4 °C and 25 °C for 120 days. The storage at 4 °C showed enhanced viability, and Field Emission Gun Scanning Electron Microscopy studies revealed the firm adherence of bacterial spores within the biochar pores, attributed to the secretion of extracellular polymeric substances. Biochar-based spore composites stored at 4 °C were subsequently added as self-healing additives in mortar. Mechanical, self-healing, and microstructural evaluations demonstrated that the biochar with Bacillus cereus DKBovi-5 exhibited superior results. Cracks up to 0.888 mm were healed within 56 days, indicating enhanced healing efficiency, as supported by higher ultrasonic pulse velocity and a lower resistivity ratio. Brunauer-Emmett-Teller 20-point adsorption-desorption analysis showed that biochar with Bacillus cereus DKBovi-5 mix possessed the smallest pore width of 3.086 nm. Additionally, Field Emission Gun Scanning Electron Microscopy- Energy Dispersive X-ray Spectroscopy, X-ray Diffraction, and Fourier Transform Infrared Spectroscopy analyses confirmed the formation of biogenic calcium carbonate in the healed regions. Overall, the biochar composite with Bacillus cereus DKBovi-5 showed significantly improved performance compared to Bacillus safensis CG1 and is recommended as a long-lasting self-healing additive for large-scale construction applications. •Coconut shell biochar acts as an efficient carrier for microbial self-healing.•Bacterial spores adhered to biochar pores, stored effectively at 4 °C for 120 days.•Biochar with Bacillus cereus healed cracks up to 0.888 mm in 56 days.•Smaller pore size of 3.086 nm was observed in the biochar with Bacillus cereus mix.•Microstructural studies confirmed calcite as the healed product.
ISSN:0926-6690
DOI:10.1016/j.indcrop.2024.120074