Changes of lignified-callus and wound-induced adventitious rooting in ancient Platycladus orientalis cuttings as affected by tree age

Stem cuttings of the endangered ancient Platycladus orientalis are a valuable genetic resource for cryopreservation and propagation, but their extremely hard adventitious root (AR) formation poses a challenge for regeneration. In this study, we investigated the causes of decreased AR formation durin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial crops and products 2023-11, Vol.203, p.117183, Article 117183
Hauptverfasser: Chang, Ermei, Guo, Wei, Xie, Yunhui, Jiang, Zeping, Dong, Yao, Jia, Zirui, Zhao, Xiulian, Liu, Jianfeng, Zhang, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stem cuttings of the endangered ancient Platycladus orientalis are a valuable genetic resource for cryopreservation and propagation, but their extremely hard adventitious root (AR) formation poses a challenge for regeneration. In this study, we investigated the causes of decreased AR formation during the initial stem (S1), callus expansion (S2), and AR formation (S3) stages in cuttings from 5-, 100-, and 700-year-old P. orientalis trees, and identified potential solutions to enhance AR formation. Proteomic analysis revealed an up-regulation of flavonoid and phenylpropanoid biosynthesis pathway-associated proteins, including chalcone synthase (CHS), chalcone isomerase (CHI), and flavonone-3-hydroxylase (F3H), as well as down-regulation of auxin transport-associated proteins, such as auxin transport protein (BIG) and auxin responsive (AIR12), in the S3 of 700-year-old donors cuttings. Subsequent biochemical analysis confirmed over-accumulation of flavonoids, phenolics, and lignin resulting in callus-lignification and inhibition of AR formation in 100- and 700-year-old donors. Notably, wounding of the lignified-callus significantly increased AR formation in cuttings of 100-year-old donors. The upregulation of expression of meristematic cells regulatory proteins (enolase (ENO) and elongation factor 1α (EF1α)), carbohydrate metabolism proteins (isoamylases (ISA)), and vitamin B6 biosynthesis proteins (pyridoxine synthase (PDX1) and pyridoxal kinase (PDXK)) after wounding, might promote AR formation in the lignified-callus with wounding of cuttings of 100-year-old donors. Overall, our findings reveal that callus-lignification inhibits AR formation, while wounding promotes it in ancient P. orientalis. This study provides a foundation for enhancing the rooting rate and shortening the rooting time in ancient P. orientalis, and potentially other difficult-to-root species. •Flavonoid and phenylpropanoid biosynthesis associated proteins were up-regulated during adventitious root (AR) formation.•Lignification of callus inhibited AR formation of stem cuttings propagated from ancient trees.•Wounding stimulated the biosynthesis of vitamin B6, starch and sucrose, which might promote AR formation in cuttings.
ISSN:0926-6690
1872-633X
DOI:10.1016/j.indcrop.2023.117183