Cross-resolution learning for Face Recognition

Convolutional Neural Network models have reached extremely high performance on the Face Recognition task. Mostly used datasets, such as VGGFace2, focus on gender, pose, and age variations, in the attempt of balancing them to empower models to better generalize to unseen data. Nevertheless, image res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Image and vision computing 2020-07, Vol.99, p.103927, Article 103927
Hauptverfasser: Massoli, Fabio Valerio, Amato, Giuseppe, Falchi, Fabrizio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Convolutional Neural Network models have reached extremely high performance on the Face Recognition task. Mostly used datasets, such as VGGFace2, focus on gender, pose, and age variations, in the attempt of balancing them to empower models to better generalize to unseen data. Nevertheless, image resolution variability is not usually discussed, which may lead to a resizing of 256 pixels. While specific datasets for very low-resolution faces have been proposed, less attention has been paid on the task of cross-resolution matching. Hence, the discrimination power of a neural network might seriously degrade in such a scenario. Surveillance systems and forensic applications are particularly susceptible to this problem since, in these cases, it is common that a low-resolution query has to be matched against higher-resolution galleries. Although it is always possible to either increase the resolution of the query image or to reduce the size of the gallery (less frequently), to the best of our knowledge, extensive experimentation of cross-resolution matching was missing in the recent deep learning-based literature. In the context of low- and cross-resolution Face Recognition, the contribution of our work is fourfold: i) we proposed a training procedure to fine-tune a state-of-the-art model to empower it to extract resolution-robust deep features; ii) we conducted an extensive test campaign by using high-resolution datasets (IJB-B and IJB-C) and surveillance-camera-quality datasets (QMUL-SurvFace, TinyFace, and SCface) showing the effectiveness of our algorithm to train a resolution-robust model; iii) even though our main focus was the cross-resolution Face Recognition, by using our training algorithm we also improved upon state-of-the-art model performances considering low-resolution matches; iv) we showed that our approach could be more effective concerning preprocessing faces with super-resolution techniques. The python code of the proposed method will be available at https://github.com/fvmassoli/cross-resolution-face-recognition. •Deep learning models performance drops in cross-resolution Face Recognition scenario.•Real world applications require resolution-robust models.•The proposed strategy enables models to extract resolution robust deep features.•Resolution-robust models improve upon state-of-the-art in cross-resolution scenarios.•Low-resolution performances increase while improving cross-resolution.
ISSN:0262-8856
1872-8138
DOI:10.1016/j.imavis.2020.103927