A coarse-grained approach to modeling gas transport in swelling porous media
In many engineering applications, understanding gas adsorption and its induced swelling in nanoporous materials is crucial. In this study, we propose a novel coarse-grained molecular dynamics (CGMD) model with gas-gas, solid-solid, and gas-solid interactions explicitly controlled to achieve the coup...
Gespeichert in:
Veröffentlicht in: | International journal of rock mechanics and mining sciences (Oxford, England : 1997) England : 1997), 2024-11, Vol.183, p.105918, Article 105918 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In many engineering applications, understanding gas adsorption and its induced swelling in nanoporous materials is crucial. In this study, we propose a novel coarse-grained molecular dynamics (CGMD) model with gas-gas, solid-solid, and gas-solid interactions explicitly controlled to achieve the coupling between gas transport and solid deformation at the microscale. The CGMD model has the capability to recover solid and gas properties, including density, Young's modulus of the solid, and viscosity of the gas to generate a broad range of swelling ratios relevant to nanostructures by using the innovative bead-spring chain networks. A comparison is made between gas transport through deformable and non-deformable nanochannels of varying sizes (35.4–123.9 nm), which is also compared with the macroscopic Hagen-Poiseuille equation. The proposed model has been further tested in a simplified nanoporous medium composed of four randomly distributed spherical solids. The Kozeny-Carman equation can generally describe the relationship between permeability and porosity, but small deviations are observed in the case of swelling porous media. Our results justify the effect of swelling on reducing gas permeability and provide a new approach to modeling gas transport in swelling porous media at the microscale within the framework of CGMD, with potential applications spanning nanofluidics, energy storage technologies, and environmental nanotechnology.
•A novel CGMD model is developed to achieve gas-solid coupling at the microscale.•Gas adsorption-induced solid swelling is realized by bead-spring chain networks.•A moderate level of swelling significantly reduces permeability. |
---|---|
ISSN: | 1365-1609 |
DOI: | 10.1016/j.ijrmms.2024.105918 |