Predicting uniaxial compressive strength from drilling variables aided by hybrid machine learning
Awareness of uniaxial compressive strength (UCS) as a key rock formation parameter for the design and development of gas and oil field plays. It plays an essential role in the selection of the drill bits and stability of the wellbore’s wall. Precise prediction of UCS before or during the drilling, e...
Gespeichert in:
Veröffentlicht in: | International journal of rock mechanics and mining sciences (Oxford, England : 1997) England : 1997), 2023-10, Vol.170, p.105546, Article 105546 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Awareness of uniaxial compressive strength (UCS) as a key rock formation parameter for the design and development of gas and oil field plays. It plays an essential role in the selection of the drill bits and stability of the wellbore’s wall. Precise prediction of UCS before or during the drilling, especially in exploration wellbores, is necessary to improve the drilling speed and reduce the instability of the wellbore walls. UCS predictor machine-learning (ML) models are developed in this study using drilling parameters recorded during drilling using least-squares support-vector machine (LSSVM) and multi-layer extreme learning machine (MELM) algorithms hybridized with cuckoo optimization algorithm (COA), particle swarm optimization (PSO) and genetic algorithm (GA) optimizers. In addition, stand-alone LSSVM and convolutional neural network (CNN) models without optimizer enhancements are evaluated. Drilling and petrophysical data recorded for two wells (A and B) from the Rag-e-Safid oil field in southwest Iran were compiled to form the studied dataset. UCS was initially calculated numerically based on data from laboratory tests from petrophysical logs. The Well A dataset was pre-processed to remove outlying data records by applying the quantile regression algorithm. That analysis indicated that 9 data records should be removed from the Well A dataset. A decision tree model was employed for feature selection purposes to identify the more influential variables with respect to UCS. Depth, weight on the drill bit (WOB), drill-string rotation speed (RPM), rate of penetration (ROP), and torque (Trq) were the variables identified as being highly influential on UCS values. Application of the ML models on the training data subset (75% of Well A data records) revealed that the MELM-COA algorithm achieved the lowest root mean squared error (4.6945 MPa) and a higher coefficient of determination (0.9873) value than the other models when predicting UCS in the Well A training and validation data subsets. The Well-A-trained MELM-COA model confirmed its generalizability within the studied field by generating low UCS prediction errors when applied to the independent Well B testing dataset. |
---|---|
ISSN: | 1365-1609 1873-4545 |
DOI: | 10.1016/j.ijrmms.2023.105546 |