Rapidly dissolving microneedles for the delivery of cubosome-like liquid crystalline nanoparticles with sustained release of rapamycin

[Display omitted] In this study, we developed a system for the transdermal delivery and controlled release of the hydrophobic immunosuppressive drug rapamycin, foreseeing an application in psoriasis treatment. To do so, rapamycin was encapsulated in phytantriol-based cubosome-like liquid crystalline...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2020-12, Vol.591, p.119942-119942, Article 119942
Hauptverfasser: Ramalheiro, Ana, Paris, Juan L., Silva, Bruno F.B., Pires, Liliana R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] In this study, we developed a system for the transdermal delivery and controlled release of the hydrophobic immunosuppressive drug rapamycin, foreseeing an application in psoriasis treatment. To do so, rapamycin was encapsulated in phytantriol-based cubosome-like liquid crystalline nanoparticles stabilized with pluronic F127. The final mass percent composition of the lipid nanoparticles was 0.25% phytantriol, 0.1% pluronic F127, 4.75% ethanol and 94.9% water. These particles showed a rapamycin encapsulation efficiency above 95% and a sustained in vitrodrug release profile throughout 14 days. Subsequently the rapamycin-carrying particles were incorporated into rapidly dissolving microneedle patches composed of a polymeric matrix of poly(vinylpyrrolidone) and poly(vinyl alcohol). Confocal microscopy allowed to infer the preferential distribution of the cubosome-like particles at the tip and baseplate of the microneedles. The fabricated microneedles showed successful piercing and deposition of the loaded cubosome-like particles on a skin-mimicking agarose gel. Finally, the rapamycin-loaded cubosome-like particles showed antiproliferative activity in natural killer cells in vitro. The results here presented show the potential of the developed system to deliver cubosome-like particles into the skin and promote the sustained release of rapamycin in the context of immunomodulation.
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2020.119942