Large eddy simulation of round jets with mild temperature difference

Understanding the behaviour of hot jets is crucial for various engineering and environmental applications. The present work studies the influence of heat transfer on the dynamics of horizontal round hot jets through Large Eddy Simulations (LES). Our focus lies on trajectory development, large-scale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mechanical sciences 2024-12, Vol.283, p.109649, Article 109649
Hauptverfasser: Qin, Siyang, Chen, Guanjiang, Shan, Feng, Liu, Wei, Zang, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding the behaviour of hot jets is crucial for various engineering and environmental applications. The present work studies the influence of heat transfer on the dynamics of horizontal round hot jets through Large Eddy Simulations (LES). Our focus lies on trajectory development, large-scale coherent structures, and turbulent kinetic budget analysis in the near-field and intermediate-field regions. LES of two horizontal round hot jets with Reynolds numbers (3934 and 5100) and corresponding Froude numbers (32.98 and 17.07) were carried out using buoyantPimpleFoam solver in OpenFOAM, and the simulation on an isothermal jet was also performed as a baseline for comparison. The results reveal that the jet core temperature decays faster in the streamwise direction but more slowly in the radial direction, indicating a wider temperature spread than velocity, and the maximum difference between the temperature and velocity spread is about 0.5D. Moreover, the energy associated with the large-scale coherent structure decreases with increasing initial jet temperature. The energy of the first two modes of snapshot Proper Orthogonal Decomposition (POD) and extended POD dropped by 12% and 14%, respectively. The coherent motion with the greatest correlation between the temperature and velocity fluctuations is identified as four pairs of Q1 and Q3 events, which are Reynolds shear stress dominant events. Furthermore, compared with the isothermal jet, the turbulent kinetic energy budgets of the hot jets indicate that the diffusion and generation terms are both reduced by approximately 50%, suggesting a transfer of more kinetic energy into potential energy rather than turbulence. The finding highlights the potential of heightened temperatures to mitigate instabilities associated with large-scale motions in hot jets. This study fills the gap on a comprehensive analysis of heat transfer effects on jet dynamics, and quantitative insights into the large-scale coherent structures are provided, contributing to a better understanding of hot jet behaviour. [Display omitted] •Quantitative examination of heat transfer’s impact on large-scale coherent structures in hot free jets.•Large eddy simulations cover near-field to intermediate-field turbulent hot jets.•The influence of heat transfer on velocity and temperature fields’ decay and spread.•Identification of coherent motion with strong velocity–temperature correlation.•Unveiling energy transport mechanisms in hot jets through t
ISSN:0020-7403
DOI:10.1016/j.ijmecsci.2024.109649