Zirconia modified nanostructured MoO3 thin films deposited by spray pyrolysis technique for Cu/MoO3-ZrO2/p-Si structured Schottky barrier diode application

We report an inorganic aqueous solution route for pure molybdenum trioxide (MoO3) and zirconium oxide composite (MoO3-ZrO2) insulating layer of Cu/MoO3-ZrO2/p-Si metal-insulator-semiconductor structured Schottky barrier diodes. These composite films were coated by Jet Nebulizer Spray Pyrolysis techn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optik (Stuttgart) 2019-12, Vol.199, p.163351, Article 163351
Hauptverfasser: Vivek, P., Chandrasekaran, J., Marnadu, R., Maruthamuthu, S., Balasubramani, V., Balraju, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report an inorganic aqueous solution route for pure molybdenum trioxide (MoO3) and zirconium oxide composite (MoO3-ZrO2) insulating layer of Cu/MoO3-ZrO2/p-Si metal-insulator-semiconductor structured Schottky barrier diodes. These composite films were coated by Jet Nebulizer Spray Pyrolysis techniques with a substrate temperature of 500 °C and analyzed using X-ray diffraction, Field emission scanning electron microscope, DC electrical conductivity and I–V characterization. These MoO3-ZrO2 films exhibited different crystal structures. Field emission scanning electron microscopes images displayed plate-like structure with improved grain size. The presence of Zr, Mo and O atoms were confirmed by energy dispersive x-ray spectrum. Optical studies shows the maximum absorption and higher optical badgap for (15 wt%) of Zr in MoO3. DC electrical studies recorded the maximum activation energy with minimum conductivity for Zr based composite films. Current - Voltage measurements were analyzed in both dark and illuminated conditions for Cu/MoO3-ZrO2/p-Si Schottky Barrier diodes. Minimum ideality factor (2.98) and maximum barrier height (0.664 eV) was obtained for 15 wt% of Zr composite thin films.
ISSN:0030-4026
1618-1336
DOI:10.1016/j.ijleo.2019.163351