A non-invasive pipeline heat flux measurement method and application based on CFBG

•A non-invasive, real-time monitoring, heat flux sensor based on CFBG was proposed.•The sensor is lightweight with a spatial resolution of 1 cm, a length of 10 mm, and a diameter of 0.125 mm.•The theoretical model and working principle of CFBG heat flux sensor were provided.•Heat flux of pipeline at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2024-12, Vol.235, p.126124, Article 126124
Hauptverfasser: Cai, Qihui, Liu, Mingyao, Song, Han, Li, Cong, Ren, Yunhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•A non-invasive, real-time monitoring, heat flux sensor based on CFBG was proposed.•The sensor is lightweight with a spatial resolution of 1 cm, a length of 10 mm, and a diameter of 0.125 mm.•The theoretical model and working principle of CFBG heat flux sensor were provided.•Heat flux of pipeline at outlet of pump in hydraulic system was real-time measured non-invasively by the sensor. A non-invasive, real-time monitoring, spectral analysis heat flux sensor with single measuring point based on chirp fiber Bragg grating (CFBG) has been proposed in this paper. When CFBG senses heat flux, the linear increase of axial thermal expansion leads to spectral broadening. The measurement of heat flux can be realized by the measurement of the full width at half maximum (FWHM). The theoretical model and working principle of CFBG heat flux sensor are established to determine the heat flux sensing characteristics of CFBG. The numerical analysis and theoretical calculation show that CFBG heat flux sensor can realize stable transformation of heat flux and FWHM. A heat flux calibration platform was built and its feasibility was verified by simulation. The sensitivity of CFBG sensor to monitor heat flux in a wide temperature range is 1.078 pm/(W/m2). The heat flux of the pipe wall at the outlet of the axial variable piston pump in the hydraulic system was quantitatively measured by the CFBG heat flux sensor. The sensor has a spatial resolution of 1 cm, a length of 10 mm, a diameter of 0.125 mm, and a sensitivity of 1.078 pm/(W/m2). It has the advantages of high spatial resolution, single measurement point, real-time measurement, small installation space, and non-invasiveness. The theoretical model can provide theoretical guidance for the design of fiber grating heat flux sensor, and it is convenient to design a series of sensors for specific measurement requirements.
ISSN:0017-9310
DOI:10.1016/j.ijheatmasstransfer.2024.126124