The role of asymmetric prediction losses in smart charging of electric vehicles
Climate change prompts humanity to look for decarbonisation opportunities, and a viable option is to supply electric vehicles with renewable energy. The stochastic nature of charging demand and renewable generation requires intelligent charging driven by predictions of charging behaviour. The conven...
Gespeichert in:
Veröffentlicht in: | International journal of electrical power & energy systems 2022-12, Vol.143, p.108486, Article 108486 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Climate change prompts humanity to look for decarbonisation opportunities, and a viable option is to supply electric vehicles with renewable energy. The stochastic nature of charging demand and renewable generation requires intelligent charging driven by predictions of charging behaviour. The conventional prediction models of charging behaviour usually minimise the quadratic loss function. Moreover, the adequacy of predictions is almost solely evaluated by accuracy measures, disregarding the consequences of prediction losses in an application context. Here, we study the role of asymmetric prediction losses which enable balancing the over- and under-predictions and adjust predictions to smart charging algorithms. Using the main classes of machine learning methods, we trained prediction models of the connection duration and compared their performance for various asymmetries of the loss function. In addition, we proposed a methodological approach to quantify the consequences of prediction losses on the performance of selected archetypal smart charging schemes. In concrete situations, we demonstrated that an appropriately selected degree of the loss function asymmetry is crucial as it almost doubles the price range where the smart charging is beneficial, and increases the extent to which the charging demand is satisfied up to 40%. Additionally, the proposed methods improve charging fairness since the distribution of unmet charging demand across vehicles becomes more homogeneous.
•The paper shows the crucial role of asymmetric prediction losses for smart charging.•We propose a methodology to quantify consequences of prediction losses.•Archetypal smart charging schemes are used to evaluate the prediction models in application context.•The asymmetric predictions almost double the range of prices where the time-of-use scheme is viable.•The energy demand gets satisfied to a higher extent and with improved fairness. |
---|---|
ISSN: | 0142-0615 1879-3517 |
DOI: | 10.1016/j.ijepes.2022.108486 |