Localisation of stress-affected chemical reactions in solids described by coupled mechanics-diffusion-reaction models
Chemical reactions in solids can induce chemical expansion of the solid that causes the emergence of the mechanical stresses, which, in turn, can affect the rate of the reaction. A typical example of this is the reaction of Si lithiation, where the stresses can inhibit the reaction up to the reactio...
Gespeichert in:
Veröffentlicht in: | International journal of engineering science 2024-03, Vol.196, p.104006, Article 104006 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chemical reactions in solids can induce chemical expansion of the solid that causes the emergence of the mechanical stresses, which, in turn, can affect the rate of the reaction. A typical example of this is the reaction of Si lithiation, where the stresses can inhibit the reaction up to the reaction locking. The reactions in solids can take place within some volume (bulk reactions) or localise at a chemical reaction front (localised reactions). These cases are typically described by different thermo-chemo-mechanical theories that contain the source/sink terms either in the bulk or at the propagating infinitely-thin interface, respectively. However, there are reactions that can reveal both regimes; hence, there is a need to link the theories describing the bulk and the localised (sharp-interface) reactions. The present paper bridges this gap and shows that when a certain structure of the Helmholtz free energy density is adopted (based on the ideas from the phase-field methods), it is possible to obtain (in the limit) the same driving force for the chemical reaction (hence, the same reaction kinetics) as derived within the theory of the sharp-interface chemical reactions based on the chemical affinity tensor.
•Volumetric and localised stress-affected chemical reactions in solids are considered.•Localised reactions are modelled as finite-thickness interfaces.•The theory gives infinitely-thin front kinetics based on the chemical affinity tensor. |
---|---|
ISSN: | 0020-7225 1879-2197 |
DOI: | 10.1016/j.ijengsci.2023.104006 |