Study on the propagation characteristics of shockwave in dense crowd in corner passage

Crowd shockwaves are prone to occur when evacuating dense crowds, especially in areas with corner passages, leading to congestion and accidents. The characteristics of shockwaves in corner passages need further exploration. This study used AnyLogic software based on the social force model to constru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of disaster risk reduction 2024-10, Vol.113, p.104826, Article 104826
Hauptverfasser: Lu, Hongcheng, Li, Jintao, Sun, Sisi, Wang, Jinghong, Ye, Ran, Wu, Jialin, Wang, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Crowd shockwaves are prone to occur when evacuating dense crowds, especially in areas with corner passages, leading to congestion and accidents. The characteristics of shockwaves in corner passages need further exploration. This study used AnyLogic software based on the social force model to construct scenarios. The propagation mechanism of crowd shockwaves was revealed through simulation analysis of the changes in wave amplitude, duration, and propagation velocity of crowd density waves under different corner angles (0–90°). It was found that a 45° corner passage has advantages compared to other corner passages for evacuation. At higher desired velocities, pedestrians form a bottleneck-like area at the corner of the passage, resulting in crowd shockwaves. Because of social forces, congestion occurs primarily in the corner area. To alleviate this pressure, pedestrians actively adjust the distance between themselves and others. The time interval between the two shockwaves decreases as the desired velocity increases. The propagation time of crowd shockwaves before the corner is generally more significant than the duration after the corner. This study could guide the elimination or reduction of crowd shockwaves, improving pedestrians' evacuation efficiency and safety in evacuation passages.
ISSN:2212-4209
2212-4209
DOI:10.1016/j.ijdrr.2024.104826