High performance, cost-effective and ecofriendly flocculant synthesized by grafting carboxymethyl cellulose and alginate with itaconic acid

Natural polymer flocculant possesses an exciting prospect in water treatment due to its non-toxicity, wide source, low cost and biodegradability. In this work, we have successfully synthesized the anionic terpolymer of carboxymethyl cellulose-itaconic acid‑sodium alginate (CIS) by microwave-assisted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2023-03, Vol.231, p.123305, Article 123305
Hauptverfasser: Zhang, Heng, Guan, Guohao, Lou, Tao, Wang, Xuejun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Natural polymer flocculant possesses an exciting prospect in water treatment due to its non-toxicity, wide source, low cost and biodegradability. In this work, we have successfully synthesized the anionic terpolymer of carboxymethyl cellulose-itaconic acid‑sodium alginate (CIS) by microwave-assisted copolymerization. By studying the flocculation properties towards cationic dye of crystal violet (CV), the optimum synthesis conditions were determined. The maximum removal rate of 100 mg/L CV simulated wastewater was 92.2 % with CIS concentration of 30 mg/L. The flocculation kinetic results showed the rapid dye removal rate and the dye decolorization ratio of 89.8 % could be obtained at 75 s. Moreover, the CIS flocculant showed excellent flocculation effects in ambient pH of 4–10, flocculation temperature of 10–40 °C, and various inorganic salts. In general, the anionic CIS flocculant shows excellent cost effectiveness, where the predicted operation cost of as-prepared CIS is about 60 % of conventional polyacrylamide flocculant. It also has the advantages of excellent ecofriendliness and rich raw material source, indicative its potential applications of wastewater treatment.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.123305