Thiolated nanoclays as a potential mucoadhesive material: Optimization by design of experiments and multivariate regression

An integrated strategy based on design of experiments (DoE) and multivariate regression was carried out to produce an optimized surface functionalized nanoclay (Mt–SH) with potential mucoadhesive properties. A mercaptosilane was grafted in montmorillonite in order to immobilize thiol groups (–SH) on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of adhesion and adhesives 2024-09, Vol.134, p.103803, Article 103803
Hauptverfasser: Ortiz-Pardo, Natalia, Fernández-Martínez, Tomás, Urbano, Bruno F., Campos-Requena, Víctor H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An integrated strategy based on design of experiments (DoE) and multivariate regression was carried out to produce an optimized surface functionalized nanoclay (Mt–SH) with potential mucoadhesive properties. A mercaptosilane was grafted in montmorillonite in order to immobilize thiol groups (–SH) on the clay. The functionalization was confirmed by IR, TGA, XRF and XRD analyses. Five variables involved in the synthesis were optimized in order to maximize two responses: mass of functionalized nanoclay and amount of thiol groups attached in the clay surface. This optimization was performed by a two–step DoE strategy using Plackett–Burman and Box–Behnken designs. The five variables and two responses were simultaneously calibrated in a single ANOVA–validated PLS regression model. Analyzing scores, loading and surface response plots, the main processing variables, interactions and quadratic terms were found achieving the optimal processing conditions for the synthesis. The quadratic model (R2 > 0.8589) predicted an optimized functionalized nanoclay of mass 3.29 ± 0.13 g of Mt–SH with 19.65 ± 0.78 μmol –SH per g Mt–SH (P 
ISSN:0143-7496
DOI:10.1016/j.ijadhadh.2024.103803