Heat transfer enhancement of phase change materials using letters-shaped fins: A review
Phase change materials (PCMs) play a crucial role in energy storage and heat transfer applications by allowing for the storage and release of significant amounts of energy during phase changes. However, the PCM suffers from an inherent low thermal conductivity, suppressing the transported heat durin...
Gespeichert in:
Veröffentlicht in: | International communications in heat and mass transfer 2024-12, Vol.159, p.108096, Article 108096 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phase change materials (PCMs) play a crucial role in energy storage and heat transfer applications by allowing for the storage and release of significant amounts of energy during phase changes. However, the PCM suffers from an inherent low thermal conductivity, suppressing the transported heat during the charging and discharging process. The fins are considered a significant technique for augmenting the thermal features of PCM storage systems. This review explores the novel application of “L,” T,“ and “Y” shapes fins to improve heat transmission in PCM systems. The review aimed to examine how various fin shapes and orientations affect the overall efficiency of PCM systems. It is reported that substantial enhancements in melting time, thermal performance, and heat transfer efficiency result from the inclusion of fins. By optimizing the dimensions and orientations of these fins, significant enhancements were noticed in both the melting/solidification efficiency and the performance of the PCM thermal system. This review paper is of great significance as it brings together and combines existing research findings, providing insights into the potential of new fin designs to transform PCM applications. This article provides a detailed analysis of the advantages of fins shaped like alphabets, which can lead to the creation of thermal energy storage systems that are both more effective and environmentally friendly. |
---|---|
ISSN: | 0735-1933 |
DOI: | 10.1016/j.icheatmasstransfer.2024.108096 |