Enhanced cooling of high-power microelectronics with swing-like pool boiling
A self-propelling swing-like heater was designed and studied under pool-boiling conditions with the aim of cooling high-power microelectronic devices/chips. The results unequivocally show that the swing motion improves the effectiveness with which the heater is cooled by a liquid coolant below the c...
Gespeichert in:
Veröffentlicht in: | International communications in heat and mass transfer 2021-06, Vol.125, p.105338, Article 105338 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A self-propelling swing-like heater was designed and studied under pool-boiling conditions with the aim of cooling high-power microelectronic devices/chips. The results unequivocally show that the swing motion improves the effectiveness with which the heater is cooled by a liquid coolant below the critical heat flux (CHF). The heat removal is enhanced because the vapor-bubble cloud is shed from the heater surface owing to the self-propelled motion of the heater, which could be employed not only under normal gravity on Earth, but also under microgravity conditions during space exploration, where the CHF restriction is more severe because of the absence of the buoyancy force responsible for removing vapor bubbles on Earth. In our work, the confinement is relatively small compared to the size of the swing-like heater, and the latter was mostly driven by the global circulation arising within the confinement owing to the formation of bubbles, rather than by the vapor recoil force observed in previous work in which relatively large confinements were employed. |
---|---|
ISSN: | 0735-1933 1879-0178 |
DOI: | 10.1016/j.icheatmasstransfer.2021.105338 |