Carbon photochemical escape rates from the modern Mars atmosphere

We provide a comprehensive update of photochemical escape rates of atomic carbon from the present-day Martian atmosphere using a one-dimensional photochemical model and a Monte Carlo escape model. The photochemical model incorporates new results relevant to carbon photochemistry at Mars, including n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Icarus (New York, N.Y. 1962) N.Y. 1962), 2021-05, Vol.360, p.114371, Article 114371
Hauptverfasser: Lo, Daniel Y., Yelle, Roger V., Lillis, Robert J., Deighan, Justin I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide a comprehensive update of photochemical escape rates of atomic carbon from the present-day Martian atmosphere using a one-dimensional photochemical model and a Monte Carlo escape model. The photochemical model incorporates new results relevant to carbon photochemistry at Mars, including new cross sections for photodissociation of CO2 into C and O2 (Lu et al. 2014) and electron impact dissociation of CO (Ajello et al. 2019). We find the newly included channel of CO2 photodissociation to be the largest contributor to C escape, at 34%–58%. CO photodissociation and CO+ dissociative recombination, which have been discussed extensively in the literature, also show up as significant sources of hot C atoms, with respective contributions of 15%–23% and 7%–10%. Electron impact dissociation of CO2 (11%–15%) and photoionization of CO (6%–20%) are also important channels. Overall, escape rates vary over 3–11×1023 s−1, with an increase of 70% at perihelion compared to aphelion, and a much larger increase of 133% at solar maximum compared to solar minimum. While these present escape rates give a total integrated escape of only 1.3 mbar of CO2 when multiplied by 3.6 billion years, the better characterization of carbon photochemistry and escape from this study will enable us to more reliably extrapolate backwards in time to when conditions of the Martian atmosphere were significantly different from those of today. •Carbon photochemical escape rate at Mars today is small at 1023 s−1.•New CO2 photodissociation channel makes up half of escape rate.•Escape rate varies significantly with seasons and solar activity.
ISSN:0019-1035
1090-2643
DOI:10.1016/j.icarus.2021.114371