Bayesian definition of random sequences with respect to conditional probabilities
We study Martin-Löf random (ML-random) points on computable probability measures on sample and parameter spaces (Bayes models). We consider variants of conditional randomness defined by ML-randomness on Bayes models and those of conditional blind randomness. We show that variants of conditional blin...
Gespeichert in:
Veröffentlicht in: | Information and computation 2023-06, Vol.292, p.105041, Article 105041 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study Martin-Löf random (ML-random) points on computable probability measures on sample and parameter spaces (Bayes models). We consider variants of conditional randomness defined by ML-randomness on Bayes models and those of conditional blind randomness. We show that variants of conditional blind randomness are ill-defined from the Bayes statistical point of view. We prove that if the sets of random sequences of uniformly computable parametric models are pairwise disjoint then there is a consistent estimator for the model. Finally, we present an algorithmic solution to a classical problem in Bayes statistics, i.e. the posterior distributions converge weakly to almost all parameters if and only if the posterior distributions converge weakly to all ML-random parameters.
•Algorithmic randomness for conditional probabilities is studied.•Blind randomness is ill-defined for conditional probabilities.•Effective orthogonality and existence of consistent estimator are equivalent.•An algorithmic solution to a classical problem in Bayes statistics. |
---|---|
ISSN: | 0890-5401 1090-2651 |
DOI: | 10.1016/j.ic.2023.105041 |