Computing absolutely normal numbers in nearly linear time

A real number x is absolutely normal if, for every base b≥2, every two equally long strings of digits appear with equal asymptotic frequency in the base-b expansion of x. This paper presents an explicit algorithm that generates the binary expansion of an absolutely normal number x, with the nth bit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information and computation 2021-12, Vol.281, p.104746, Article 104746
Hauptverfasser: Lutz, Jack H., Mayordomo, Elvira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A real number x is absolutely normal if, for every base b≥2, every two equally long strings of digits appear with equal asymptotic frequency in the base-b expansion of x. This paper presents an explicit algorithm that generates the binary expansion of an absolutely normal number x, with the nth bit of x appearing after npolylog(n) computation steps. This speed is achieved by simultaneously computing and diagonalizing against a martingale that incorporates Lempel-Ziv parsing algorithms in all bases.
ISSN:0890-5401
1090-2651
DOI:10.1016/j.ic.2021.104746