Polylog depth, highness and lowness for E
We study the relations between the notions of highness, lowness and logical depth in the setting of complexity theory. We introduce a new notion of polylog depth based on time bounded Kolmogorov complexity. We show polylog depth satisfies all basic logical depth properties, namely sets in P are not...
Gespeichert in:
Veröffentlicht in: | Information and computation 2020-04, Vol.271, p.104483, Article 104483 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the relations between the notions of highness, lowness and logical depth in the setting of complexity theory. We introduce a new notion of polylog depth based on time bounded Kolmogorov complexity. We show polylog depth satisfies all basic logical depth properties, namely sets in P are not polylog deep, sets with (time bounded)-Kolmogorov complexity greater than polylog are not polylog deep, and only polylog deep sets can polynomially Turing compute a polylog deep set. We prove that if NP does not have p-measure zero, then NP contains polylog deep sets. We show that every high set for E contains a polylog deep set in its polynomial Turing degree, and that there exist Low(E,EXP) polylog deep sets. Keywords: algorithmic information theory; Kolmogorov complexity; Bennett logical depth. |
---|---|
ISSN: | 0890-5401 1090-2651 |
DOI: | 10.1016/j.ic.2019.104483 |