Polylog depth, highness and lowness for E

We study the relations between the notions of highness, lowness and logical depth in the setting of complexity theory. We introduce a new notion of polylog depth based on time bounded Kolmogorov complexity. We show polylog depth satisfies all basic logical depth properties, namely sets in P are not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information and computation 2020-04, Vol.271, p.104483, Article 104483
1. Verfasser: Moser, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the relations between the notions of highness, lowness and logical depth in the setting of complexity theory. We introduce a new notion of polylog depth based on time bounded Kolmogorov complexity. We show polylog depth satisfies all basic logical depth properties, namely sets in P are not polylog deep, sets with (time bounded)-Kolmogorov complexity greater than polylog are not polylog deep, and only polylog deep sets can polynomially Turing compute a polylog deep set. We prove that if NP does not have p-measure zero, then NP contains polylog deep sets. We show that every high set for E contains a polylog deep set in its polynomial Turing degree, and that there exist Low(E,EXP) polylog deep sets. Keywords: algorithmic information theory; Kolmogorov complexity; Bennett logical depth.
ISSN:0890-5401
1090-2651
DOI:10.1016/j.ic.2019.104483