Monotonous betting strategies in warped casinos
Suppose that the outcomes of a roulette table are not entirely random, in the sense that there exists a successful betting strategy. Is there a successful ‘separable’ strategy, in the sense that it does not use the winnings from betting on red in order to bet on black, and vice-versa? We study this...
Gespeichert in:
Veröffentlicht in: | Information and computation 2020-04, Vol.271, p.104480, Article 104480 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Suppose that the outcomes of a roulette table are not entirely random, in the sense that there exists a successful betting strategy. Is there a successful ‘separable’ strategy, in the sense that it does not use the winnings from betting on red in order to bet on black, and vice-versa? We study this question from an algorithmic point of view and observe that every strategy M can be replaced by a separable strategy which is computable from M and successful on any outcome-sequence where M is successful. We then consider the case of mixtures and show: (a) there exists an effective mixture of separable strategies which succeeds on every casino sequence with effective Hausdorff dimension less than 1/2; (b) there exists a casino sequence of effective Hausdorff dimension 1/2 on which no effective mixture of separable strategies succeeds. Finally we extend (b) to a more general class of strategies. |
---|---|
ISSN: | 0890-5401 1090-2651 |
DOI: | 10.1016/j.ic.2019.104480 |