Combining a forward supervised filter learning with a sparse NMF for breast cancer histopathological image classification

Histopathological images play a important role in clinical diagnosis, particularly in identifying and assessing the severity of abnormal conditions like benign lesions and malignant tumors. Traditional machine learning techniques for processing histopathology images involve the extraction of manual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intelligence-based medicine 2024, Vol.10, p.100174, Article 100174
Hauptverfasser: Karuppasamy, ArunaDevi, Abdesselam, Abdelhamid, zidoum, Hamza, Hedjam, Rachid, Al-Bahri, Maiya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Histopathological images play a important role in clinical diagnosis, particularly in identifying and assessing the severity of abnormal conditions like benign lesions and malignant tumors. Traditional machine learning techniques for processing histopathology images involve the extraction of manual features from these images, which is typically done with the assistance of industry experts. Recent advancements in Deep Learning (DL), especially with Convolutional Neural Networks (CNN), have enabled the automatic extraction of multi-level abstract features directly from raw data. This capability significantly enhances the performance of complex computer vision tasks. Classic CNN models like AlexNet and VggNet employ back-propagation algorithms to learn filters in the training phase. However, these algorithms demand large labeled datasets, resulting in extensive computational processing. Additionally, they often face the vanishing gradient problem, which can negatively impact the quality of the learning process. Besides, in many domains, acquiring enough labeled images for conducting properly the training phase is a real challenge. To address these challenges, a feed-forward propagation approach was proposed using Non-Negative Matrix Factorization(NMF). The NMF technique factorizes the input data into two latent factors (non-negative matrices). It has been shown that by enforcing constraints such as sparsity on the latent factors, dominant features that are mostly correlated with tumors types can be extracted. In this work, a novel model combining sparse NMF and Support Vector Machine (SVM) was developed for classifying histopathological images. We have derived a mathematical model of a novel feed-forward filter learning approach that combines sparse NMF (SNMF) and Support Vector Machine technique (SVM). The model was used to design and implement a feed-forward CNN classifier to classify histopathology images. This model has been evaluated on the histopathology images from Sultan Qaboos University Hospital (SQUH dataset) and the public BreaKHis dataset. The experiments we have conducted demonstrate the efficiency of the proposed model, especially on small-sized SQUH datasets achieving an AUC of 0.90, 0.89, 0.85, and 0.86 on 4x,10x, 20x, and 40x magnifications, respectively, and achieving an AUC of 0.95 BreaKHis dataset. •Proposing a novel feed-forward CNN for classifying histopathology images. The filters are learned using Sparse Non-negative Matrix Factorizat
ISSN:2666-5212
2666-5212
DOI:10.1016/j.ibmed.2024.100174