Efficient and selective recovery of Mo and V from spent hydrodesulfurization catalysts via oxidation roasting followed by Na2CO3 and NaOH leaching
Spent hydrodesulfurization (HDS) catalysts containing large amounts of valuable metals, such as Mo and V, are hazardous solid wastes but also valuable secondary resources. However, the current recovery process suffers from the difficulty of balancing the leaching efficiency of Mo and V and their sel...
Gespeichert in:
Veröffentlicht in: | Hydrometallurgy 2024-11, Vol.229, p.106381, Article 106381 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spent hydrodesulfurization (HDS) catalysts containing large amounts of valuable metals, such as Mo and V, are hazardous solid wastes but also valuable secondary resources. However, the current recovery process suffers from the difficulty of balancing the leaching efficiency of Mo and V and their selectivity over Al. This work focused on the effect of phase transformation during roasting operation on the leaching behavior Mo, V, and Al and adopted an oxidation roasting followed by mixed alkali of Na2CO3 and NaOH leaching process to recover Mo and V from spent HDS catalysts. The results indicated that the phase transformation of Mo, V, and Al species during oxidation roasting process played a crucial role in achieving efficient leaching of Mo and V, as well as reducing leaching efficiency of Al. This transformation involved the change in Mo and V species changed from low valent compounds to high valent oxides, and Al2O3 from γ-phase to θ- and α-phases. In addition, efficient and selective leaching of 99.3% Mo and 97.8% V was realized, with only 0.03% Al being dissolved, by roasting the spent catalysts at 700 °C for 2 h and then leaching with a mixed solution of 1.2 mol/L Na2CO3 and 1.6 mol/L NaOH. The efficient and selective leaching of Mo and V can significantly reduce the burden of subsequent separation and purification, which provided an important prerequisite for the development of a new process for the recovery of Mo and V from HDS spent catalysts in alkaline systems.
•Phase transitions in Mo, V and Al were the key to efficient and selective leaching.•Oxidation roasting and mixed alkali ensure high efficiency leaching of Mo and V.•The leaching of Al was inhibited by phase conversion of Al and mixed alkali system.•Excellent selectivity reduced the burden of subsequent separation and purification. |
---|---|
ISSN: | 0304-386X |
DOI: | 10.1016/j.hydromet.2024.106381 |