Stream sediment analysis for Lithium (Li) exploration in the Douro region (Portugal): A comparative study of the spatial interpolation and catchment basin approaches
Lithium (Li) was recently added to the list of critical raw materials by the European Union due to its significance for the green energy transition. Thus, the development of new toolchains to make Li exploration more economic and more effective is needed. Stream sediment analysis can play an importa...
Gespeichert in:
Veröffentlicht in: | Journal of geochemical exploration 2022-05, Vol.236, p.106978, Article 106978 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lithium (Li) was recently added to the list of critical raw materials by the European Union due to its significance for the green energy transition. Thus, the development of new toolchains to make Li exploration more economic and more effective is needed. Stream sediment analysis can play an important part in these new tool chains. In this work, two historical stream sediment datasets covering parts of the Fregeneda-Almendra pegmatite field in the Douro region (Portugal) were reprocessed considering two distinct approaches: spatial interpolation through inverse distance weighting (IDW) and the catchment basin approach using the concentration area (C-A) fractal analysis. The following objectives were delineated: (i) determine pathfinder elements for Li, considering relevant associations in the mineralization sources; (ii) compare the performance of both approaches; (iii) identify new target areas for Li. In the case of spatial interpolation, the highest Li values were associated to granites although the use of key elements allowed lithological discrimination and the delineation of target areas. In the catchment basin approach, fractal analysis proved to be effective in decreasing the number of areas of interest with high accuracy (>75%) when considering the previously mapped Li-pegmatites. One of the limitations identified was the number of anomalous basins related to the granites, despite the use of pathfinder elements allowing discriminating granite- from pegmatite-related Li anomalies. Comparing the two approaches, the spatial interpolation method is more adequate for the early stages of exploration (reconnaissance), while the catchment basin approach is more suited for prospect-scale exploration. Field validation of the results identified one pegmatite containing Li mineralization and three others with favorable signs for Li mineralization in the Douro region.
•Compares the elemental associations in stream sediments and the sources in Iberia•Identifies geochemical pathfinders considering whole-rock data of pegmatites•Evaluates the performance of two distinct approaches to stream sediment analysis•Assess the utility of each approach to mineral exploration•Provides new Li prospects in the Douro region (Portugal) |
---|---|
ISSN: | 0375-6742 1879-1689 |
DOI: | 10.1016/j.gexplo.2022.106978 |