Torelli theorem for moduli stacks of vector bundles and principal G-bundles

Given any irreducible smooth complex projective curve X, of genus at least 2, consider the moduli stack of vector bundles on X of fixed rank and determinant. It is proved that the isomorphism class of the stack uniquely determines the isomorphism class of the curve X and the rank of the vector bundl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geometry and physics 2025-01, Vol.207, p.105350, Article 105350
Hauptverfasser: Alfaya, David, Biswas, Indranil, Gómez, Tomás L., Mukhopadhyay, Swarnava
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given any irreducible smooth complex projective curve X, of genus at least 2, consider the moduli stack of vector bundles on X of fixed rank and determinant. It is proved that the isomorphism class of the stack uniquely determines the isomorphism class of the curve X and the rank of the vector bundles. The case of trivial determinant, rank 2 and genus 2 is specially interesting: the curve can be recovered from the moduli stack, but not from the moduli space (since this moduli space is P3 thus independently of the curve). We also prove a Torelli theorem for moduli stacks of principal G-bundles on a curve of genus at least 3, where G is any non-abelian reductive group.
ISSN:0393-0440
DOI:10.1016/j.geomphys.2024.105350