Torelli theorem for moduli stacks of vector bundles and principal G-bundles
Given any irreducible smooth complex projective curve X, of genus at least 2, consider the moduli stack of vector bundles on X of fixed rank and determinant. It is proved that the isomorphism class of the stack uniquely determines the isomorphism class of the curve X and the rank of the vector bundl...
Gespeichert in:
Veröffentlicht in: | Journal of geometry and physics 2025-01, Vol.207, p.105350, Article 105350 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given any irreducible smooth complex projective curve X, of genus at least 2, consider the moduli stack of vector bundles on X of fixed rank and determinant. It is proved that the isomorphism class of the stack uniquely determines the isomorphism class of the curve X and the rank of the vector bundles. The case of trivial determinant, rank 2 and genus 2 is specially interesting: the curve can be recovered from the moduli stack, but not from the moduli space (since this moduli space is P3 thus independently of the curve).
We also prove a Torelli theorem for moduli stacks of principal G-bundles on a curve of genus at least 3, where G is any non-abelian reductive group. |
---|---|
ISSN: | 0393-0440 |
DOI: | 10.1016/j.geomphys.2024.105350 |