Lump and rogue wave solutions to a (2+1)-dimensional Boussinesq type equation

In this paper, we study a (2+1)-dimensional Boussinesq type equation. By applying the Hirota direct method, lump and line rogue wave solutions are presented with the aid of symbolic computations. The solutions are expressed in terms of a set of restricted parameters with necessary and sufficient con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geometry and physics 2021-09, Vol.167, p.104275, Article 104275
Hauptverfasser: Zhou, Yuan, Manukure, Solomon, McAnally, Morgan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study a (2+1)-dimensional Boussinesq type equation. By applying the Hirota direct method, lump and line rogue wave solutions are presented with the aid of symbolic computations. The solutions are expressed in terms of a set of restricted parameters with necessary and sufficient conditions that guarantee their existence. An interesting result is that when the parameters meet the rank requirement, we have lump solutions, otherwise, we may get line rogue waves.
ISSN:0393-0440
1879-1662
DOI:10.1016/j.geomphys.2021.104275