Lump and rogue wave solutions to a (2+1)-dimensional Boussinesq type equation
In this paper, we study a (2+1)-dimensional Boussinesq type equation. By applying the Hirota direct method, lump and line rogue wave solutions are presented with the aid of symbolic computations. The solutions are expressed in terms of a set of restricted parameters with necessary and sufficient con...
Gespeichert in:
Veröffentlicht in: | Journal of geometry and physics 2021-09, Vol.167, p.104275, Article 104275 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study a (2+1)-dimensional Boussinesq type equation. By applying the Hirota direct method, lump and line rogue wave solutions are presented with the aid of symbolic computations. The solutions are expressed in terms of a set of restricted parameters with necessary and sufficient conditions that guarantee their existence. An interesting result is that when the parameters meet the rank requirement, we have lump solutions, otherwise, we may get line rogue waves. |
---|---|
ISSN: | 0393-0440 1879-1662 |
DOI: | 10.1016/j.geomphys.2021.104275 |