Geodesic orbit metrics in a class of homogeneous bundles over quaternionic Stiefel manifolds
Geodesic orbit spaces (or g.o. spaces) are defined as those homogeneous Riemannian spaces (M=G∕H,g) whose geodesics are orbits of one-parameter subgroups of G. The corresponding metric g is called a geodesic orbit metric. We study the geodesic orbit spaces of the form (Sp(n)∕Sp(n1)×⋯×Sp(ns),g), with...
Gespeichert in:
Veröffentlicht in: | Journal of geometry and physics 2021-07, Vol.165, p.104223, Article 104223 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Geodesic orbit spaces (or g.o. spaces) are defined as those homogeneous Riemannian spaces (M=G∕H,g) whose geodesics are orbits of one-parameter subgroups of G. The corresponding metric g is called a geodesic orbit metric. We study the geodesic orbit spaces of the form (Sp(n)∕Sp(n1)×⋯×Sp(ns),g), with 0 |
---|---|
ISSN: | 0393-0440 1879-1662 |
DOI: | 10.1016/j.geomphys.2021.104223 |