Geodesic orbit metrics in a class of homogeneous bundles over quaternionic Stiefel manifolds

Geodesic orbit spaces (or g.o. spaces) are defined as those homogeneous Riemannian spaces (M=G∕H,g) whose geodesics are orbits of one-parameter subgroups of G. The corresponding metric g is called a geodesic orbit metric. We study the geodesic orbit spaces of the form (Sp(n)∕Sp(n1)×⋯×Sp(ns),g), with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geometry and physics 2021-07, Vol.165, p.104223, Article 104223
Hauptverfasser: Arvanitoyeorgos, Andreas, Souris, Nikolaos Panagiotis, Statha, Marina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Geodesic orbit spaces (or g.o. spaces) are defined as those homogeneous Riemannian spaces (M=G∕H,g) whose geodesics are orbits of one-parameter subgroups of G. The corresponding metric g is called a geodesic orbit metric. We study the geodesic orbit spaces of the form (Sp(n)∕Sp(n1)×⋯×Sp(ns),g), with 0
ISSN:0393-0440
1879-1662
DOI:10.1016/j.geomphys.2021.104223