Non-existence of orthogonal coordinates on the complex and quaternionic projective spaces

DeTurck and Yang have shown that in the neighborhood of every point of a 3-dimensional Riemannian manifold, there exists a system of orthogonal coordinates (that is, with respect to which the metric has diagonal form). We show that this property does not generalize to higher dimensions. In particula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geometry and physics 2020-09, Vol.155, p.103770, Article 103770
Hauptverfasser: Gauduchon, Paul, Moroianu, Andrei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:DeTurck and Yang have shown that in the neighborhood of every point of a 3-dimensional Riemannian manifold, there exists a system of orthogonal coordinates (that is, with respect to which the metric has diagonal form). We show that this property does not generalize to higher dimensions. In particular, the complex projective spaces CPm and the quaternionic projective spaces HPq, endowed with their canonical metrics, do not have local systems of orthogonal coordinates for m,q≥2.
ISSN:0393-0440
1879-1662
DOI:10.1016/j.geomphys.2020.103770