Classical and relativistic fluids as intermediate integrals of finite dimensional mechanical systems

We explore the relationship between mechanical systems describing the motion of a particle with the mechanical systems describing a continuous medium. More specifically, we will study how the so-called intermediate integrals or fields of solutions of a finite dimensional mechanical system (a second...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geometry and physics 2020-09, Vol.155, p.103769, Article 103769
1. Verfasser: Alonso-Blanco, R.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We explore the relationship between mechanical systems describing the motion of a particle with the mechanical systems describing a continuous medium. More specifically, we will study how the so-called intermediate integrals or fields of solutions of a finite dimensional mechanical system (a second order differential equation) are simultaneously Euler’s equations of fluids and conversely. This will be done both in the classical and relativistic context. A direct relationship will be established by means of the so-called time constraint (classical unsteady case, static or not) and the relativistic correction (for arbitrary pseudo-Riemannian metrics).
ISSN:0393-0440
1879-1662
DOI:10.1016/j.geomphys.2020.103769