On fibrations of Lie groupoids

As groupoids generalize groups, motivated by group extensions we consider a kind of fibrations of Lie groupoids, called locally topological product Lie groupoid fibrations with fiber A, i.e., 1→A→G→K→1where A,G and K are Lie groupoids. Similar to the theory of group extensions, we show that the exis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geometry and physics 2020-06, Vol.152, p.103644, Article 103644
Hauptverfasser: Chen, Bohui, Du, Cheng-Yong, Wang, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As groupoids generalize groups, motivated by group extensions we consider a kind of fibrations of Lie groupoids, called locally topological product Lie groupoid fibrations with fiber A, i.e., 1→A→G→K→1where A,G and K are Lie groupoids. Similar to the theory of group extensions, we show that the existence of locally topological product Lie groupoid fibrations with fiber A over K is obstructed by a groupoid cohomology of HΛ̄3(K,ZA), and these locally topological product Lie groupoid fibrations are classified by HΛ̄2(K,ZA) once exists. Here ZA is the center of A. This generalizes the theory of group extensions, of gerbes over manifolds/groupoids and etc.
ISSN:0393-0440
1879-1662
DOI:10.1016/j.geomphys.2020.103644