Complex nilmanifolds and Kähler-like connections
In this note, we analyze the question of when will a complex nilmanifold have Kähler-like Strominger (also known as Bismut), Chern, or Riemannian connection, in the sense that the curvature of the connection obeys all the symmetries of that of a Kähler metric. We give a classification in the second...
Gespeichert in:
Veröffentlicht in: | Journal of geometry and physics 2019-12, Vol.146, p.103512, Article 103512 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note, we analyze the question of when will a complex nilmanifold have Kähler-like Strominger (also known as Bismut), Chern, or Riemannian connection, in the sense that the curvature of the connection obeys all the symmetries of that of a Kähler metric. We give a classification in the second case and a partial description in the first and the third case. It would be interesting to understand these questions for all Lie–Hermitian manifolds, namely, Lie groups equipped with a left invariant complex structure and a compatible left invariant metric. |
---|---|
ISSN: | 0393-0440 1879-1662 |
DOI: | 10.1016/j.geomphys.2019.103512 |