Complex nilmanifolds and Kähler-like connections

In this note, we analyze the question of when will a complex nilmanifold have Kähler-like Strominger (also known as Bismut), Chern, or Riemannian connection, in the sense that the curvature of the connection obeys all the symmetries of that of a Kähler metric. We give a classification in the second...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geometry and physics 2019-12, Vol.146, p.103512, Article 103512
Hauptverfasser: Zhao, Quanting, Zheng, Fangyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note, we analyze the question of when will a complex nilmanifold have Kähler-like Strominger (also known as Bismut), Chern, or Riemannian connection, in the sense that the curvature of the connection obeys all the symmetries of that of a Kähler metric. We give a classification in the second case and a partial description in the first and the third case. It would be interesting to understand these questions for all Lie–Hermitian manifolds, namely, Lie groups equipped with a left invariant complex structure and a compatible left invariant metric.
ISSN:0393-0440
1879-1662
DOI:10.1016/j.geomphys.2019.103512