Exploring multimetal interactions between FeNi3 alloy and Lu3Ga5O12 metal oxide for improved water splitting performance
[Display omitted] •Synthesis of novel FeNi3/Lu3Ga5O12 nanostructures via gel-matrix method.•FeNi3/Lu3Ga5O12 nanostructures shows good morphology with enhanced surface area.•Smaller Tafel slope of 37 mV/dec and 50 mV/dec and overpotential of 219 mV and 177 mV for OER and HER, respectively.•The scalab...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2025-02, Vol.381, p.133426, Article 133426 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•Synthesis of novel FeNi3/Lu3Ga5O12 nanostructures via gel-matrix method.•FeNi3/Lu3Ga5O12 nanostructures shows good morphology with enhanced surface area.•Smaller Tafel slope of 37 mV/dec and 50 mV/dec and overpotential of 219 mV and 177 mV for OER and HER, respectively.•The scalable FeNi3/Lu3Ga5O12 nanostructures shows robust stability for 60 h for commercial applications.
The production of energy from fossil fuels generates greenhouse gases, leading to global warming and various environmental impacts. Extensive research into sustainable alternative fuels has identified hydrogen (H2) as a viable option. With net zero carbon emissions, hydrogen presents a promising solution for sustainable and renewable energy. This study employs a simple gel-matrix method to fabricate Ni-Fe alloy-based nanocomposites in alkaline media (1 M KOH). Achieving outstanding performance in hydrogen generation through the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with impressive turn-over frequencies (TOF) of 2.98 s−1 at 177 mV and 1.48 s−1 at 219 mV. Nanocomposite’s unique structure enhances electroactive surface area (347.5 cm2/gram), extending electrocatalytic active sites and durability to 60 h. It shows excellent performance, characterized by low Tafel slopes of 50 mV/dec and 37 mV/dec, and minimal overpotentials of 219 mV for the oxygen evolution reaction (OER) and 177 mV for the hydrogen evolution reaction (HER), reaching a current density of 10 mA cm−2. This study presents a method for synthesizing high-performance, sustainable metal-alloy/garnet hybrid electrocatalysts, offering a new frontier in design of next-generation materials for advanced energy conversion technologies. |
---|---|
ISSN: | 0016-2361 |
DOI: | 10.1016/j.fuel.2024.133426 |