Key aspects of polymeric nanofluids as a new enhanced oil recovery approach: A comprehensive review

•An overview of descriptive statistics about nanoparticle-assisted polymer flooding.•Reviewing of preparation, characterization, and stabilization of polymeric nanofluid.•Discussion of polymeric nanofluids mechanism behind EOR.•Displacement tests, numerical simulations, and economic evaluations of n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2024-07, Vol.368, p.131515, Article 131515
Hauptverfasser: Salem, Khalaf G., Tantawy, Mahmoud A., Gawish, Ahmed A., Salem, Adel M., Gomaa, Sayed, El-hoshoudy, A.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•An overview of descriptive statistics about nanoparticle-assisted polymer flooding.•Reviewing of preparation, characterization, and stabilization of polymeric nanofluid.•Discussion of polymeric nanofluids mechanism behind EOR.•Displacement tests, numerical simulations, and economic evaluations of nanoparticle-assisted polymer flooding.•Screening of the challenges, gaps, and prospects. Indubitably, polymer flooding is considered the most efficacious technique for chemically enhanced oil recovery (EOR). However, its application shows practical limitations in terms of chemical, thermal, and mechanical degradation, and sensitivity to harsh conditions within the porous media of the reservoir. Of late, the combination of polymer and nanoparticles (NPs) has gained remarkable attention for application as a polymeric nanofluid-EOR agent due to the encouraging results of its experimental investigations. Despite the promising results of polymeric nanofluid in the laboratory, there is an absence of application of such nanoparticle-induced polymer flooding on a field scale. In this paper, a comprehensive review of polymeric nanofluid-EOR has been conducted from the latest, up-to-date literature to attain guidelines for upcoming field-scale projects. To that end, formulation, characterization, stabilization evaluation, mechanisms behind EOR, displacement tests, numerical simulation, and economic evaluation of polymeric nanofluids have been reviewed and presented. Furthermore, the challenges and future directions for polymeric nanofluids have been determined. The reviewed investigations have revealed that the substitution of traditional polymer flooding by polymeric nanofluid appears promising. Furthermore, the literature indicates that polymeric nanofluid significantly improved its rheological properties, reduced interfacial tension (IFT), and altered wettability for EOR purposes. In addition, polymeric nanofluid revealed higher incremental oil recovery compared to conventional polymer flooding. Overall, this article will serve as a theoretical basis and a roadmap for researchers and industrialists to pursue their efforts in the manifestation of nanoparticle-induced polymer flooding on the field scale.
ISSN:0016-2361
DOI:10.1016/j.fuel.2024.131515