Quantale-valued convex structures as lax algebras

Based on a unital and commutative quantale (Q,⁎), a Q-valued lax extension of the nonempty finite powerset monad and a Q-valued finitary closure space (also called algebraic Q-valued closure space) are introduced. It is proved that the category of (Pf,Q)-categories with respect to the Q-valued lax e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuzzy sets and systems 2023-12, Vol.473, p.108737, Article 108737
1. Verfasser: Pang, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on a unital and commutative quantale (Q,⁎), a Q-valued lax extension of the nonempty finite powerset monad and a Q-valued finitary closure space (also called algebraic Q-valued closure space) are introduced. It is proved that the category of (Pf,Q)-categories with respect to the Q-valued lax extension of the nonempty finite powerset monad Pf is isomorphic to that of Q-valued finitary closure spaces. Considering the Q-valued finitary closure spaces as linkages, it is shown that balanced Q-convex structures can be treated as (Pf,Q)-categories when Q is required to be a frame and Q-fuzzifying convex structures can be treated as (Pf,Q)-categories when Q is required to be a completely distributive De Morgan algebra.
ISSN:0165-0114
1872-6801
DOI:10.1016/j.fss.2023.108737