The description of fluid criticality by cusp equation of state: Scaling is no longer unique one

We introduce the concept of changeable covolume reaching at the critical point maximum - twice the value of van-der Waals covolume and obeying an empirical power law with critical exponent γ−1 and amplitude E0. On this base and proposed earlier cusp equation of state, we developed an explicit non-pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fluid phase equilibria 2022-11, Vol.562, p.113544, Article 113544
1. Verfasser: Tatarenko, Alexander V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce the concept of changeable covolume reaching at the critical point maximum - twice the value of van-der Waals covolume and obeying an empirical power law with critical exponent γ−1 and amplitude E0. On this base and proposed earlier cusp equation of state, we developed an explicit non-parametric equation of state for critical region that describes critical phenomena as an alternative to scaling. We get (i) - a relation between amplitudes D0B0δ−1=E0G0 were the last amplitude is the slope of saturated pressure at the critical point; (ii) – power law for diameter with critical exponent 1−α and amplitude E0B02/(3δ+6); (iii) – complex of amplitudes above Γ0+G0E0=1 and below the critical point δΓ0−G0E0=1; (iv) - universal strength of Yang-Yang anomaly.
ISSN:0378-3812
1879-0224
DOI:10.1016/j.fluid.2022.113544