Multi-criteria optimization for parametrizing excess Gibbs energy models

Thermodynamic models contain parameters which are adjusted to experimental data. Usually, optimal descriptions of different data sets require different parameters. Multi-criteria optimization (MCO) is an appropriate way to obtain a compromise. This is demonstrated here for Gibbs excess energy (GE) m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fluid phase equilibria 2020-11, Vol.522, p.112676, Article 112676
Hauptverfasser: Forte, Esther, Kulkarni, Aditya, Burger, Jakob, Bortz, Michael, Küfer, Karl-Heinz, Hasse, Hans
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thermodynamic models contain parameters which are adjusted to experimental data. Usually, optimal descriptions of different data sets require different parameters. Multi-criteria optimization (MCO) is an appropriate way to obtain a compromise. This is demonstrated here for Gibbs excess energy (GE) models. As an example, the NRTL model is applied to the three binary systems (containing water, 2-propanol, and 1-pentanol). For each system, different objectives are considered (description of vapor-liquid equilibrium, liquid-liquid equilibrium, and excess enthalpies). The resulting MCO problems are solved using an adaptive numerical algorithm. It yields the Pareto front, which gives a comprehensive overview of how well the given model can describe the given conflicting data. From the Pareto front, a solution that is particularly favorable for a given application can be selected in an instructed way. The examples from the present work demonstrate the benefits of the MCO approach for parametrizing GE -models.
ISSN:0378-3812
1879-0224
DOI:10.1016/j.fluid.2020.112676