Probabilistic Galois theory in function fields

We study the irreducibility and Galois group of random polynomials over function fields. We prove that a random polynomial f=yn+∑i=0n−1ai(x)yi∈Fq[x][y] with i.i.d. coefficients ai taking values in the set {a(x)∈Fq[x]:deg⁡a≤d} with uniform probability, is irreducible with probability tending to 1−1qd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Finite fields and their applications 2024-09, Vol.98, p.102466, Article 102466
Hauptverfasser: Entin, Alexei, Popov, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the irreducibility and Galois group of random polynomials over function fields. We prove that a random polynomial f=yn+∑i=0n−1ai(x)yi∈Fq[x][y] with i.i.d. coefficients ai taking values in the set {a(x)∈Fq[x]:deg⁡a≤d} with uniform probability, is irreducible with probability tending to 1−1qd as n→∞, where d and q are fixed. We also prove that with the same probability, the Galois group of this random polynomial contains the alternating group An. Moreover, we prove that if we assume a version of the polynomial Chowla conjecture over Fq[x], then the Galois group of this polynomial is actually equal to the symmetric group Sn with probability tending to 1−1qd. We also study the other possible Galois groups occurring with positive limit probability. Finally, we study the same problems with n fixed and d→∞.
ISSN:1071-5797
1090-2465
DOI:10.1016/j.ffa.2024.102466