Rational points of lattice ideals on a toric variety and toric codes

We show that the number of rational points of a subgroup inside a toric variety over a finite field defined by a homogeneous lattice ideal can be computed via Smith normal form of the matrix whose columns constitute a basis of the lattice. This generalizes and yields a concise toric geometric proof...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Finite fields and their applications 2023-09, Vol.90, p.102226, Article 102226
1. Verfasser: Şahin, Mesut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the number of rational points of a subgroup inside a toric variety over a finite field defined by a homogeneous lattice ideal can be computed via Smith normal form of the matrix whose columns constitute a basis of the lattice. This generalizes and yields a concise toric geometric proof of the same fact proven purely algebraically by Lopez and Villarreal for the case of a projective space and a standard homogeneous lattice ideal of dimension one. We also prove a Nullstellensatz type theorem over a finite field establishing a one to one correspondence between subgroups of the dense split torus and certain homogeneous lattice ideals. As application, we compute the main parameters of generalized toric codes on subgroups of the torus of Hirzebruch surfaces, generalizing the existing literature.
ISSN:1071-5797
1090-2465
DOI:10.1016/j.ffa.2023.102226