Curcumin attenuates AFB1-induced duck liver injury by inhibiting oxidative stress and lysosomal damage

Aflatoxin B1 (AFB1), as the most toxic secondary metabolite produced by Aspergillus flavus, is a serious threat to human and animal health. Curcumin, a polyphenol from the plant turmeric, has demonstrated unique anti-damage properties in several studies. But, its ability to alleviate AFB1-induced li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food and chemical toxicology 2023-02, Vol.172, p.113593, Article 113593
Hauptverfasser: Qiao, Baoxin, He, Ying, Gao, Xinglin, Liu, Haiyan, Rao, Gan, Su, Qian, Ruan, Zhiyan, Tang, Zhaoxin, Hu, Lianmei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aflatoxin B1 (AFB1), as the most toxic secondary metabolite produced by Aspergillus flavus, is a serious threat to human and animal health. Curcumin, a polyphenol from the plant turmeric, has demonstrated unique anti-damage properties in several studies. But, its ability to alleviate AFB1-induced liver damage in ducks and the underlying mechanisms are not completely elucidated. In this study, we investigated the intervention of curcumin on AFB1-induced hepatotoxicity in ducks. Research data showed that the combination of curcumin and AFB1 alleviated oxidative stress, reduced malondialdehyde (MDA) accumulation and relieved hepatotoxicity after 28 days of treatment, compared with AFB1. Also, curcumin upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream antioxidant enzymes (SOD, HO-1), which enhanced the antioxidant capacity of the liver. In addition, curcumin inhibited AFB1-induced lysosomal damage in the liver, with the character of reduced lysosomal membrane permeabilization, restored autophagic flux, and promoted lysosomal biogenesis, thereby enhancing the self-protective capacity of the liver. In conclusion, our results suggest that curcumin alleviates AFB1-induced duck hepatotoxicity by inhibiting oxidative stress and lysosomal damage.
ISSN:0278-6915
1873-6351
DOI:10.1016/j.fct.2022.113593