Maize prolificacy under contrasting plant densities and N supplies: I. Plant growth, biomass allocation and development of apical and sub-apical ears from floral induction to silking
In limited-production regions for maize (Zea mays, L.) crop, late sowing date and low plant densities are progressively adopted. At low plant densities, the expression of prolificacy (i.e., more than one fertile ear per plant) can stabilize maize yield throughout environments. However, the limited a...
Gespeichert in:
Veröffentlicht in: | Field crops research 2022-08, Vol.284, p.108553, Article 108553 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In limited-production regions for maize (Zea mays, L.) crop, late sowing date and low plant densities are progressively adopted. At low plant densities, the expression of prolificacy (i.e., more than one fertile ear per plant) can stabilize maize yield throughout environments. However, the limited adoption of N fertilization can reduce kernel set on the apical (E1) and sub-apical ear (E2) and consequently crop grain yield at low plant densities. Five Argentinian maize hybrids with different degrees of prolificacy (1.37–1.92 ears pl-1 at 4 pl m-2 irrigated and without N limitations) were cultivated under contrasting plant densities (4 and 8 pl m-2) and N fertilization rates (70 and 270 kg N ha-1) to analyze (i) plant biomass, biomass allocation in E1 and E2 (BAE1 and BAE2), and floret differentiation of both ears from floral induction to silking stage, (ii) the anthesis-silking intervals of E1 and E2 (ASIE1 and ASIE2) and the silking interval between E1 and E2 (ESI), and (iii) silk extrusion of both ears. From the eight-ligulated leaf stage onwards, low N availability and high density decreased plant biomass and BAE2 without modifying BAE1. Additionally, N stress reduced floret differentiation of E2 in the less prolific hybrids (DK-747 and DK-7210). On the contrary, E1 and E2 of the most prolific hybrids (DK-3F22, DK-4F37 and DK-664) showed similar temporal patterns of growth and floret differentiation. These hybrids presented the highest proportion of exposed silks in both ears coinciding with their highest BAE1 and BAE2, which possibly modulated silk elongation. Finally, under the most stressful environments, the lower BAE2 than BAE1 at silking increased ASI of both ears, ESI and reduced the proportion of plants with silks of E2 exposed to pollen. The latter response (i.e., low proportion of plants with silks extrusion in E2) was more pronounced in less prolific hybrids. Therefore, floret differentiation and BA in E2 of the most prolific hybrids would be more stable in the face of changes in nutritional offer, a prevalent scenario of limited-production regions.
•Prolific hybrids showed a similar pattern of growth and development of E2 and E1.•Less prolific hybrids showed a decoupling of florets evolution between E1 and E2.•Less prolific hybrids showed a decoupling of biomass allocation between E1 and E2.•At silking, low N and high density only reduced biomass allocation in E2.•Anthesis-silking interval of E1 and E2 was related to ear biomass allocation. |
---|---|
ISSN: | 0378-4290 1872-6852 |
DOI: | 10.1016/j.fcr.2022.108553 |