Conformal tilings, combinatorial curvature, and the type problem

Roughly, a conformal tiling of a Riemann surface is a tiling where each tile is a suitable conformal image of a Euclidean regular polygon. In 1997, Bowers and Stephenson constructed an edge-to-edge conformal tiling of the complex plane using conformally regular pentagons. In contrast, we show that f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expositiones mathematicae 2025-02, Vol.43 (1), p.125633, Article 125633
1. Verfasser: Nagaraju, Mohith Raju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Roughly, a conformal tiling of a Riemann surface is a tiling where each tile is a suitable conformal image of a Euclidean regular polygon. In 1997, Bowers and Stephenson constructed an edge-to-edge conformal tiling of the complex plane using conformally regular pentagons. In contrast, we show that for all n≥7, there is no edge-to-edge conformal tiling of the complex plane using conformally regular n-gons. More generally, we discuss a relationship between the combinatorial curvature at each vertex of the conformal tiling and the universal cover (sphere, plane, or disc) of the underlying Riemann surface. This result follows from the work of Stone (1976) and Oh (2005) through a rich interplay between Riemannian geometry and combinatorial geometry. We provide an exposition of these proofs and some new applications to conformal tilings.
ISSN:0723-0869
DOI:10.1016/j.exmath.2024.125633