A note on the base-p expansions of putative counterexamples to the p-adic Littlewood conjecture

In this paper, we investigate the base-p expansions of putative counterexamples to the p-adic Littlewood conjecture of de Mathan and Teulié. We show that if a counterexample exists, then so does a counterexample whose base-p expansion is uniformly recurrent. Furthermore, we show that if the base-p e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expositiones mathematicae 2024-05, Vol.42 (3), p.125548, Article 125548
Hauptverfasser: Blackman, J., Kristensen, S., Northey, M.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate the base-p expansions of putative counterexamples to the p-adic Littlewood conjecture of de Mathan and Teulié. We show that if a counterexample exists, then so does a counterexample whose base-p expansion is uniformly recurrent. Furthermore, we show that if the base-p expansion of x is a morphic word τ(φω(a)) where φω(a) contains a subword of the form uXuXu with limn→∞|φn(u)|=∞, then x satisfies the p-adic Littlewood conjecture. In the special case when p=2, we show that the conjecture holds for all pure morphic words.
ISSN:0723-0869
1878-0792
DOI:10.1016/j.exmath.2024.125548