A note on the base-p expansions of putative counterexamples to the p-adic Littlewood conjecture
In this paper, we investigate the base-p expansions of putative counterexamples to the p-adic Littlewood conjecture of de Mathan and Teulié. We show that if a counterexample exists, then so does a counterexample whose base-p expansion is uniformly recurrent. Furthermore, we show that if the base-p e...
Gespeichert in:
Veröffentlicht in: | Expositiones mathematicae 2024-05, Vol.42 (3), p.125548, Article 125548 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we investigate the base-p expansions of putative counterexamples to the p-adic Littlewood conjecture of de Mathan and Teulié. We show that if a counterexample exists, then so does a counterexample whose base-p expansion is uniformly recurrent. Furthermore, we show that if the base-p expansion of x is a morphic word τ(φω(a)) where φω(a) contains a subword of the form uXuXu with limn→∞|φn(u)|=∞, then x satisfies the p-adic Littlewood conjecture. In the special case when p=2, we show that the conjecture holds for all pure morphic words. |
---|---|
ISSN: | 0723-0869 1878-0792 |
DOI: | 10.1016/j.exmath.2024.125548 |