Hand gesture classification framework leveraging the entropy features from sEMG signals and VMD augmented multi-class SVM

To improve the classification accuracy of hand movements from sEMG signals, this paper puts forward a unified hand gesture classification framework which exploits the potentials of variational mode decomposition (VMD) and multi-class support vector machine (SVM). Acquiring the sEMG signals from 25 i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2024-03, Vol.238, p.121972, Article 121972
Hauptverfasser: T., Prabhavathy, E., Vinodh Kumar, E., Balaji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To improve the classification accuracy of hand movements from sEMG signals, this paper puts forward a unified hand gesture classification framework which exploits the potentials of variational mode decomposition (VMD) and multi-class support vector machine (SVM). Acquiring the sEMG signals from 25 intact subjects for ten functional activities in real-time, we implement a non-recursive adaptive decomposition technique to sEMG signals and perform power spectral analysis to identify the dominant narrow-band intrinsic mode functions (IMFs) that contain prominent biomarkers. Subsequently, to compute the optimal feature vectors from a set of entropy measures, this work investigates the performance of two techniques namely minimum redundancy and maximum relevance (MRMR) technique and kernel principal component analysis (kPCA). After extracting the optimal set of entropy features, the proposed approach implements a multi-class SVM based on one-vs-one (OVO) strategy to classify the hand gestures. The performance of the multi-class SVM compared with those of the K-nearest neighbor (KNN) and naïve bayes (NB) classifiers highlight that multi-class SVM offers superior performance with an average classification accuracy of 99.98%. Moreover, for statistical analysis of the experimental results, this work performs Friedman test to analyze the significance of the SVM, KNN and NB classifier performances. Finally, the performance comparison of the proposed approach with those of the state-of-the-art techniques highlights the superiority of the proposed framework to improve the hand gesture classification accuracy. •VMD augmented multi-class SVM framework is presented for gesture recognition.•Optimal entropy measures from decomposed IMFs are extracted through kPCA technique.•A maximum classification accuracy of 99.98% is achieved using multi- class SVM.•Statistical analysis of ML classifier models is performed using Friedman test.
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2023.121972