A semi-automated hybrid schema matching framework for vegetation data integration

Integrating disparate and distributed vegetation data is critical for consistent and informed national policy development and management. Australia’s National Vegetation Information System (NVIS) under the Department of Climate Change, Energy, the Environment and Water (DCCEEW) is the only nationall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2023-11, Vol.229, p.120405, Article 120405
Hauptverfasser: Asif-Ur-Rahman, Md, Hossain, Bayzid Ashik, Bewong, Michael, Islam, Md Zahidul, Zhao, Yanchang, Groves, Jeremy, Judith, Rory
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Integrating disparate and distributed vegetation data is critical for consistent and informed national policy development and management. Australia’s National Vegetation Information System (NVIS) under the Department of Climate Change, Energy, the Environment and Water (DCCEEW) is the only nationally consistent vegetation database and hierarchical typology of vegetation types in different locations. Currently, this database employs manual approaches for integrating disparate state and territory datasets which is labour intensive and can be prone to human errors. To cope with the ever-increasing need for up to date vegetation data derived from heterogeneous data sources, a Semi-Automated Hybrid Matcher (SAHM) is proposed in this paper. SAHM utilises both schema level and instance level matching following a two-tier matching framework. A key novel technique in SAHM called Multivariate Statistical Matching is proposed for automated schema scoring which takes advantage of domain knowledge and correlations between attributes to enhance the matching. To verify the effectiveness of the proposed framework, the performance of the individual as well as combined components of SAHM have been evaluated. The empirical evaluation shows the effectiveness of the proposed framework which outperforms existing state of the art methods like Cupid, Coma, Similarity Flooding, Jaccard Leven Matcher, Distribution Based Matcher, and EmbDI. In particular, SAHM achieves between 88% and 100% accuracy with significantly better F1 scores in comparison with state-of-the-art techniques. SAHM is also shown to be several orders of magnitude more efficient than existing techniques. •The Integration of the National vegetation database is key for policy development.•A novel semi-automated hybrid schema matching framework, SAHM is proposed.•SAHM is a two-tiered matching solution that uses schema and instance information.•SAHM yields better schema matching results in comparison with the State-of-the-art.
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2023.120405